Emf Equation of Transformer
As the current source to primary is sinusoidal, the flux induced by it will be also sinusoidal. Hence, the function of flux may be considered as a sine function. Mathematically, derivative of that function will give a function for rate of change of flux linkage with respect to time. This later function will be a cosine function since d(sinθ)/dt = cosθ. So, if we derive the expression for rms value of this cosine wave and multiply it with number of turns of the winding, we will easily get the expression for rms value of induced emf of that winding. In this way, we can easily derive the emf equation of transformer.
Let's say, T is number of turns in a winding,
Φm is the maximum flux in the core in Wb.
Where φ is the instantaneous alternating flux and represented as,
As the maximum value of cos2πft is 1, the maximum value of induced emf e is,
To obtain the rms value of induced counter emf, divide this maximum value of e by √2.
This is EMF equation of transformer.
If E1 & E2 are primary and secondary emfs and T1 & T2 are primary and secondary turns then, voltage ratio or turns ratio of transformer is,

No comments:
Post a Comment