Monday, May 30, 2016

Why CT Secondary Should Not Be Kept Open?

Why CT Secondary Should Not Be Kept Open?



wave form of CT open circuit voltage

The electrical power system load current always flows through current transformer primary; irrespective of whether the current transformer is open circuited or connected to burden at its secondary.
If CT secondary is open circuited, all the primary current will behave as excitation current, which ultimately produce huge voltage. Every current transformer has its won non-linear magnetizing curve, because of which secondary open circuit voltage should be limited by saturation of the core. If one can measure the rms voltage across the secondary terminals, he or she will get the value which may not appear to be dangerous. As the CT primary current is sinusoidal in nature, it zero 100 times per second.(As frequency of the current is 50 Hz). The rate of change of flux at every current zero is not limited by saturation and is high indeed. This develops extremely high peaks or pulses of voltage. This high peaks of voltage may not be measured by conventional voltmeter. But these high peaks of induced voltage may breakdown the CT insulation, and may case accident to personnel. The actual open-circuit voltage peak is difficult to measure accurately because of its very short peaks. That is why CT secondary should not be kept open.

Knee Point Voltage of Current Transformer

Knee Point Voltage of Current Transformer

This is the significance of saturation level of a CT core mainly used for protection purposes. The sinusoidal voltage of rated frequency applied to the secondary terminals of current transformer, with other winding being open circuited, which when increased by 10% cause the exiting current to increase 50%. The CT core is made of CRGO steel. It has its won saturation level. The EMF induced in the CT secondary windings is
E2 = 4.44φfT2
Where, f is the system frequency, φ is the maximum magnetic flux in Wb. T2 is the number of turns of the secondary winding. The flux in the core, is produced by excitation current Ie. We have a non-liner relationship between excitation current and magnetizing flux. After certain value of excitation current, flux will not further increase so rapidly with increase in excitation current. This non-liner relation curve is also called B - H curve. Again from the equation above, it is found that, secondary voltage of a current transformer is directly proportional to flux φ. Hence one typical curve can be drawn from this relation between secondary voltage and excitation current as shown below. It is clear from the curve that, linear relation between V and Ie is maintained from point A and K. The point ′A′ is known as ′ankle point′ and point ′K′ is known as ′Knee Point′. knee point <a href=